Skip to main content

This distant Neptune-like planet really shouldn't exist

[ad_1]


It’s time for us to get acquainted with the “Forbidden Planet.” No, not the 1956 sci-fi classic—I’m talking about a new Neptune-like exoplanet found 920 light-years away, given the moniker thanks to its inexplicably ability to exist too close to its host star.



In the world of space science, Neptune is far from a unique gem. Similar exoplanets (gas giants far bigger than Earth but exceptionally smaller than something like Jupiter) are perhaps the most common planets out there in space. But if they get too close to their host star, in an orbital zone we ominously call the “Neptunian desert,” they’re inundated with bouts of stellar radiation that evaporates their gaseous atmospheres and leaves behind a barren, shriveled up rocky core.



That’s not the case with the Forbidden Planet—formally known as NGTS-4b. It’s in the Neptunian desert, frightfully close to its host star, boasting an orbit of just 1.34 days. Yet, as researchers report in a new paper published recently in the Monthly Notices of the Royal Astronomical Society, it retains its Neptune-like atmosphere. It’s the first-ever detection of a Neptunian exoplanet defying the odds and residing cozily (relatively speaking) amongst its host star.



“As far as we are aware, it is the first exoplanet of its kind to have been found in the Neptunian Desert,” says Ed Gillen, an astronomer with the University of Cambridge and a coauthor of the new study. ”It seems as though the Neptunian desert is not completely dry, so we are now searching our data for other similar planets to help us understand whether it is greener than was once thought.”



It’s not as though the desert is barren: “we see hot and warm Jupiter-size planets, and hot and warm planets with the size of the Earth or a bit larger,” says Vincent Bourrier, an astronomer with the University of Geneva who was not involved with the study. “There are even warm Neptunes. But there are no hot Neptunes very close to their stars, hence this name of 'Neptunian desert.’” The desert’s boundaries vary star to star, but its effects on planets is generally the same: atmospheric loss for mid-sized gas planets (unlike hot Jupiters, they don’t have enough mass to hold onto their atmosphere), turning them into bald, rocky wastelands.



The typical way scientists detect exoplanets is by watching for dips in the brightness of a star, which would happen when a planet in its orbit transits past the star from Earth’s perspective. Exoplanets like NGTS-4b—so incredibly small and so incredibly close to their stars—aren’t easily detected since the dip in brightness is so minuscule.



“Most transiting planets detected from the ground are large and hence, when they transit, they cause their stars to appear around 1 percent dimmer,” says Gillen. “NGTS-4b is much smaller, however, causing its star to appear only 0.2 percent dimmer. To detect such a small dimming from the ground is remarkable.”



Luckily, Gillen and his team had the state-of-the-art Next-Generation Transit Survey (NGTS) observing facility at their disposal. “Our telescopes are situated in the Chilean Atacama Desert, which is probably the best place on Earth to search for exoplanets,” thanks to the area’s marvellously clear skies, and absence of light pollution and radio interference, says Gillen. “We also have incredibly precise telescope machinery. Both of the aspects greatly aided us to to find this planet.”


It’s incredible to conceive of how NGTS-4b has found a way to exist so spectacularly close to its host star. A smidgen smaller than Neptune itself (okay, 20 percent smaller, but still three times the size of Earth and about 20 times more massive) it’s torched to 1,000 degrees Celsius. It’s hotter than the surface of Mercury during the day. So what’s going on here?



So far, the leading theories Gillen and his team surmise are that the planet moved into its currently neighborhood only recently, or that it once possessed a much larger atmosphere that’s actually in the process of evaporating. Its atmosphere might also just possess some strange chemistry that gives it super powers to withstand the stellar radiation.



Whatever the case, the team is eager to find more examples of gaseous Neptunian desert dwellers in order to compare situations and hone in on the reasons why an atmosphere like NGTS-4b’s could withstand such brutal conditions. The team doesn’t have much data to understand the atmosphere’s composition (the star is too faint for the transit observations to tell us anything in detail), but follow-up observations with some more powerful equipment (oh hello there, James Webb Space Telescope) might yield something useful.



The discovery doesn’t do much to move the needle in how we look for exoplanets, but as Bourrier explains, “unusual objects such as this one can tell us a lot about the processes that formed the desert,” and the potential for cosmic oases to form in these zones. And at the very least, it’s just cool to find a planet defying the odds and upending our expectations. Hot stuff, isn’t it?




[ad_2]

Written By Neel V. Patel

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ice for m

In the wake of NYC terrorist attack, Trump says he's ordered increased 'Extreme Vetting'

[ad_1] President Donald Trump has requested for a heightened vetting program following Tuesday's terrorist attack in New York. @realDonaldTrump: I have just ordered Homeland Security to step up our already Extreme Vetting Program. Being politically correct is fine, but not for this! Earlier, he tweeted that the attack in lower Manhattan was committed by a "sick and deranged person." @realDonaldTrump: In NYC, looks like another attack by a very sick and deranged person. Law enforcement is following this closely. NOT IN THE U.S.A.! His remarks came after a motorist drove onto a busy bicycle path near the World Trade Center memorial and struck several people on Tuesday, leaving at least eight people dead and a dozen injured. NBC News repor

How to save everything you post to social media

[ad_1] If you get the urge to revisit that cute photo you posted some time last year, you'll have to scroll through your timeline for what feels like hours to track it back down. Instead, when you share a post on social media, also save it to your phone for safe-keeping. This will not only save your social media hits for posterity, but also make them easier to find if you ever need to rediscover them. In this guide, we focus on saving photos and videos, because text posts are slightly more complicated—the only way to really preserve text from Facebook and Twitter is to download your entire archive (we'll explain how to do this below), and Instagram and Snapchat don't let you save or export your instant messages at all. When it comes to photos and videos, there's a shortcut to make sure they stay on your phone: Originally film them through a dedicated app, which will save them to a gallery. Only then should you open up a social media app to share them. However, there'