Skip to main content

Quantum teleportation is real, but it's not what you think

[ad_1]


In 2017, physicists beamed photons from Tibet to a satellite passing more than 300 miles overhead. These particles jumping through space evoked wide-eyed sci-fi fantasies back on Earth: Could Star Trek transporters be far behind? Sorry for the buzzkill, but this real-world trick, called quantum teleportation, probably won’t ever send your body from one place to another. It’s essentially a super-secure data transfer, which is tough to do with the jumble of code that makes a human.



Photons and teensy bits of atoms are the most complex bodies we can send over long distances in a flash. Each particle of the same type—photon, neutron, ­electron—​is largely the same as every other member of its subatomic species.



Configurations known as quantum states distinguish them. Two photons spinning clockwise, for example, are identical. You can’t make one zip elsewhere with no lag time (sorry, that’s magic), but you can create its duplicate in another spot. Not so useful for moving people, but valuable for instantaneous, secure communication.



Let’s say I’m on Earth and want to share a secret with you, an astronaut. I create a scrambled code—one impossible to decipher without its key—and use it to email you an inscrutable missive. But how do I send the key without risk of a spy intercepting it?


I start by encoding it in binary using the states of a group of photons (I could say clockwise is 1, counter is 0). I can securely share the digits thanks to a trick that occurs when two particles of the same type interact: entanglement. If Photon 1 spins clockwise, Photon 2 whirls counter. If one changes, so does the other—no matter how far apart they are.



I can break up such a pair—one stays with me, one beams to you in a ray of light—and know their states will always be complementary. This means you can infer the info stored on my Earthly particle by measuring your own. All I have to do is wait for my half of the couple to take on the same state as a third photon—one that I encoded with a digit of binary—and tell you to examine your own. In an instant, it’s turned into a precious passkey.



Presto chango: You got the digit hidden on my secret particle without ever seeing it. Since the photon I beamed up to you didn’t actually contain the cipher until its entangled buddy switched to the right state, we never risked spilling our secrets to an interloper en route.




RELATED: In photos: a rare glimpse inside the heart of a quantum computer




Such transfers could become common in the next decade, but this process won’t translate well into human transport: One person contains around 1028 atoms. Copying all of that data would require breaking down the body to the atomic level (ouch!), which would almost certainly prove fatal. And then you’d have to perfectly reconstruct it from scratch out of particles waiting at the far end of the journey. And hey: Would that faxed version even be the same person as the original?


Perhaps it’s best to leave teleportation—and all of its philosophical implications—to ­science-fiction stories, and focus on finding less deadly modes of futuristic travel.



This article was originally published in the Spring 2019 Transportation issue of Popular Science.




[ad_2]

Written By Matthew R. Francis

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ic...

How to avoid the mid-movie bathroom break

[ad_1] Long movies and the urge to pee have been linked since the early days of cinema. Sixty-three years before Avengers: Endgame and its three-hour runtime, moviegoers settled in for nearly four hours of The Ten Commandments . “There will be an intermission,” director Cecil B. DeMille announced during the movie’s introduction. And audiences’ bladders were relieved. On average, movies aren’t getting longer, but they also don’t come with a predetermined bathroom break. That means when nature calls, you’ve got to either sit in growing discomfort or gamble on the best time to run to the restroom. But it doesn’t have to be this way, and for most people, setting your body to “do not disturb” is fairly simple. Go before the show The first piece of advice is also the easiest: pee before the movie starts. Generally, healthy adults urinate every 3-4 hours, so the longer a movie runs, the more urgent it becomes to reset your internal p...

Charted: Here's how much your food waste hurts the environment

[ad_1] Our species is pretty good at wasting food. Some we discard at the farm for being undersized or oddly shaped. Others we allow to decay in their shipping containers, thrown away before they even reach shelves. We leave even more foodstuffs wasting away in grocery stores, often by letting it sit there until it reaches its sell-by date. As consumers, we don’t have much control over most of the process that brings our food to the grocery store, but we do have control over how much food we personally waste. Let's face it: We’ve all found liquified lettuce in our veggie drawers. Don't fret. It's arguably impossible to consume 100 percent of the food we buy. But a healthy reminder of the effect food waste has on the environment might help us all to be more conscious of the amount of food we eat—and don't eat. Consumer food waste varies extensively depending on the area. In South and Southeast Asia, the Food and Agriculture Organization (FAO) estimates that only around ...