Skip to main content

How birds of a feather flock together

[ad_1]


Scientists have long wondered how and why fish swim in shoals and birds fly in flocks—what’s in it for the individuals? New research from New York University helps shed some light on what benefits they derive from their formations.



Unlike, say, a peloton of cyclists that are travelling on land by pushing their tires against the ground, fish and birds are moving in a medium that’s all around them, not just below them—and they’re both doing it, basically, with similar mechanisms: what NYU Ph.D. candidate Joel Newbolt, the study’s lead author, refers to as “flapping.”



Previous work has demonstrated that “in these groups like schools and flocks, you can do things like reduce the amount of energy it takes to move through the water or through the air,” Newbolt says. These ways of traveling lead schools of fish and flocks of birds to move in characteristic shapes. The geometry may differ from species to species—a flock of starlings moves differently than a V of Canada geese—but both are deriving benefit from their flock.


In previous models of this behavior, scientists assumed that each fish or bird was flapping exactly the same way, like a group of machines. But the reality is more complicated: even though every goose in the world is different from every other goose, still somehow all groups of Canada geese fly in similar configurations.



Ironically, the researchers behind this latest study actually used machines to model flapping in a controlled setting. They positioned two hydrofoils, a lifting surface designed to cut through liquid efficiently, in a tank of water. They lined the foils up one behind the other, and “flapped” both of them in a manner that parallels the general movement of a fish’s swimming tail or a bird’s flapping wings. What they found was that the lead hydrofoil created a wake behind it that “affects the position of the follower,” according to a supplementary video published by the researchers. That wake “can even keep the follower from colliding with, or separating from, the leader.”



The experiment “shows that these configurations are very robust,” says Lehigh University’s Keith Moored, who was not involved with the current research. His lab also studies flapping. The research lends more weight to the idea that the shape of schools of fish or flocks of birds is mediated by the air or water surrounding them, he says, which exercises force on wings or fins.



But the real surprise finding was that the relationship between the hydrofoils—and the influence of the wake—remained the same regardless of variations in how they flapped. “I was actually very surprised by that finding,” says Lehigh. “It’s a completely new idea.” The thing that kept them similar was the force exerted by the water itself. In the experiments, the wake left by the lead hydrofoil dictated the relationship that the back hydrofoil maintained. It pushed the back hydrofoil away or pulled it closer.



Understanding how individual fish and birds manage to move in groups so successfully can also offer insights to the designers of alternative energy technologies like wind and water power, the team hopes. “Depending on the river speed and their spacing, you can get more efficiency in the following ones,” Newbolt says.



But even the animals remain mysterious at this point. “There’s really so much to be understood about these movements in groups,” says Newbolt.




[ad_2]

Written By Kat Eschner

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ic...

Humans flourished through a supervolcano eruption 74,000 years ago (so you can make it through Tuesday)

[ad_1] About 74,000 years ago, a large chunk of a Pacific island exploded. It sent ash and other debris around the world, including to the southern tip of Africa, where it would be found by a team of international scientists and entered as the latest data point in one of the hottest debates in paleoanthropology ( I know ): Did the Toba supervolcano thrust our planet into a 1,000-year volcanic winter, thus bottle-necking animals and plants alike? Or was it just a little blip on our historic radar? That’s the contentious arena into which our intrepid researchers venture, this time with a new study in Nature establishing that humans in modern-day South Africa not only survived, but flourished after the Toba eruption. Where once was (we think, maybe) a mountain, there is now a huge caldera with a lake inside, and an island inside that. Their evidence shows that debris from the explosion landed 9,000 kilometers (5592.3 miles) away, the farthest distance traveled ever recorded for the ...

These 1950s experiments showed us the trauma of parent-child separation. Now experts say they're too unethical to repeat—even on monkeys.

[ad_1] John Gluck’s excitement about studying parent-child separation quickly soured. He’d been thrilled to arrive at the University of Wisconsin at Madison in the late 1960s, his spot in the lab of renowned behavioral psychologist Harry Harlow secure. Harlow had cemented his legacy more than a decade earlier when his experiments showed the devastating effects of broken parent-child bonds in rhesus monkeys. As a graduate student researcher, Gluck would use Harlow’s monkey colony to study the impact of such disruption on intellectual ability. Gluck found academic success, and stayed in touch with Harlow long after graduation. His mentor even sent Gluck monkeys to use in his own laboratory. But in the three years Gluck spent with Harlow—and the subsequent three decades he spent as a leading animal researcher in his own right—his concern for the well-being of his former test subjects overshadowed his enthusiasm for animal research. Separating parent and child,...