Skip to main content

Smart foam and artificial intelligence could help robots know if they're injured

[ad_1]


If you fall hard and break your arm, your body will let you know with crackling hot speed that something is wrong. Robots, though, don’t have neurons, so need a method to know what’s going on with their artificial bodies.



Consider a future where a robot operates autonomously, but an appendage becomes injured, says Robert Shepherd, an associate professor of mechanical engineering at Cornell University. “It’s going to continue moving its limb and thinking its hand or foot is going to be in one position, when it’s actually going to be in a different position,” he says. “We need skins, or internal neural-like sensors, to communicate this information three-dimensionally and continuously, to the robot’s controller.”



Shepherd’s lab has developed a foam, light, and artificial intelligence system that allows it to sense what’s happening to it—whether the foam is bending up or down, or twisting, or both. The results were published today in the journal Science Robotics.


Here’s how it works: the key sensor is a layer of 30 optical fibers in the foam, which is made of silicone. The fibers stick out of one end of the foam, and connect to other equipment. The intensity of the light coming out of the end of those optical fibers lets the system know what’s happening to the foam. When the foam is at rest, the light looks a certain way. If the foam bends or twists, the light changes.



“So you can detect changes in shape by looking at the change in the overall pattern of light intensity,” says Ilse Van Meerbeek, a PhD candidate in mechanical engineering at Cornell, and the first author of the paper describing the foam.



Humans obviously have brains to interpret what’s going on with their bodies, but this foam has no noggin. For that job, the researchers turned to artificial intelligence. To build the AI, the researchers first gathered information about how the light from the fibers changed when the foam was bent or twisted in a known way. That data let them train machine learning models that they could use going forward to interpret what’s happening with the foam.


This isn’t the only sensing strategy out there that researchers can use to see how a soft robotic creation is stretching: flexible electronic sensors use a change in current to notice how they’re stretching, while previous work in Shepherd’s lab has used stretchable light fibers to measure whether something has become deformed.



Of course, sensors like these are crucial for the robot to know what’s going on with it and around it. “Your robot needs to have a sense of itself in the world,” Shepherd, who is senior author on the new paper, says.



Right now, the foam and AI experimental set-up at Cornell involves gear that’s external to the foam, but Van Meerbeek says that it would be possible to miniaturize everything with the goal of having a self-contained, self-sensing foam setup. One possible application she sees for this kind of sensor system? “Robots learning how to walk for themselves,” she says, referring to soft ‘bots. “It has to be able to sense its shape.”




[ad_2]

Written By Rob Verger

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ic...

Humans flourished through a supervolcano eruption 74,000 years ago (so you can make it through Tuesday)

[ad_1] About 74,000 years ago, a large chunk of a Pacific island exploded. It sent ash and other debris around the world, including to the southern tip of Africa, where it would be found by a team of international scientists and entered as the latest data point in one of the hottest debates in paleoanthropology ( I know ): Did the Toba supervolcano thrust our planet into a 1,000-year volcanic winter, thus bottle-necking animals and plants alike? Or was it just a little blip on our historic radar? That’s the contentious arena into which our intrepid researchers venture, this time with a new study in Nature establishing that humans in modern-day South Africa not only survived, but flourished after the Toba eruption. Where once was (we think, maybe) a mountain, there is now a huge caldera with a lake inside, and an island inside that. Their evidence shows that debris from the explosion landed 9,000 kilometers (5592.3 miles) away, the farthest distance traveled ever recorded for the ...

These 1950s experiments showed us the trauma of parent-child separation. Now experts say they're too unethical to repeat—even on monkeys.

[ad_1] John Gluck’s excitement about studying parent-child separation quickly soured. He’d been thrilled to arrive at the University of Wisconsin at Madison in the late 1960s, his spot in the lab of renowned behavioral psychologist Harry Harlow secure. Harlow had cemented his legacy more than a decade earlier when his experiments showed the devastating effects of broken parent-child bonds in rhesus monkeys. As a graduate student researcher, Gluck would use Harlow’s monkey colony to study the impact of such disruption on intellectual ability. Gluck found academic success, and stayed in touch with Harlow long after graduation. His mentor even sent Gluck monkeys to use in his own laboratory. But in the three years Gluck spent with Harlow—and the subsequent three decades he spent as a leading animal researcher in his own right—his concern for the well-being of his former test subjects overshadowed his enthusiasm for animal research. Separating parent and child,...