Skip to main content

Oodles of virtual planets could help Google and NASA find actual aliens

[ad_1]


The researchers at NASA’s Frontier Development Lab (FDL) in Mountain View California just spent the summer working on out-of-this-world problems. They came from all over the globe and all different disciplines; computer science engineers, planetary scientists, even a particle physicist. For eight weeks they dug through data and maps, created worlds and atmospheres, sorted them, and tested their computer algorithms against the simulations. Their final products are still rough, but some hope they might contribute to our understanding of our own solar system, and overall efforts to find habitable—and maybe even inhabited—planets elsewhere in the universe.



The FDL program itself is now in its third year. Previous sessions have tackled problems including asteroid detection, mapping, and deflection, as well as mapping solar storms.



This year there were sessions focused on our solar system, including groups looking for ways to improve space weather predictions sponsored by IBM, KX, and Lockheed Martin. There were teams sponsored by Intel, Space Resources, and Xprize, who turned to AI to develop new ways to chart maps and routes on the surfaces of asteroids and other planetary bodies in the search for space resources. Beyond our solar system, three projects sponsored by Google looked at finding exoplanets, examining their atmospheres, and searching them for signs of life.



FDL is set up as a public-private partnership, with companies providing funding, resources, and expertise, and NASA and the SETI Institute providing data, experts, and access to facilities. While NASA got leads on potential research avenues that could help contribute to projects like the TESS telescope in the future, companies like Google got a chance to show off their technology to a room of advanced scientists and engineers—potential customers who might decide to use those products in future research projects. Part of the pitch from Google, which sponsored three of the challenges, was that Google Cloud offers a less-expensive, more-accessible option compared to existing supercomputers that might perform a similar role.



“NASA has a supercomputer, the Pleiades, but getting time on those supercomputers is really hard,” says Massimo Moscaro, Technical Director of Applied AI at Google, and one of the mentors of the project.



Google’s option won’t replace the power of a supercomputer, but it can handle vast amounts of information relatively quickly—an advantage when researchers are dealing with thousands or even millions of possible worlds.



Other Worlds



Google has some experience with exoplanets. Last year, the tech company developed a machine learning technique that identified two of them in data collected by the Kepler Space Telescope. But with Kepler running on fumes, researchers wanted to find a way to continue that success with the next generation of planet-hunting telescope—TESS.



TESS stands for the Transiting Exoplanet Survey Satellite, and in just a few months of observation, its scientists have already identified two potential exoplanets. But the researchers working at FDL this summer didn’t have access to that data—it didn’t exist yet. Instead, they used data already gathered from Kepler and simulated TESS data. (NASA created the data before TESS launched in order to test out planet-finding techniques before they started getting the real results back.)



Using machine-learning they managed to create an algorithm able to recognize planets in the Kepler dataset slightly better than the existing programs (96 percent vs 94 percent), and created computer models that could sort out tiny signals of planets from all the background information in the simulated TESS data. Their methods are still in the development phase, but the researchers hope that they could help the TESS researchers classify planets even more quickly as data continues to come in.



Finding the planets is one step, but actually understanding what those planets are like is another issue entirely. That’s where the astrobiology challenges came in.



One team, focused on classifying planets atmospheres, actually created a simulated dataset of 3 million exoplanets—rocky worlds similar to Earth. So far, humanity has only discovered a few thousand planets outside our solar system, many of which are large gas giants. Three million planets to experiment with (even if they are just computer simulations) is valuable for exoplanet researchers, who can test their theories on the large dataset while they wait for data from TESS and other future telescopes to accumulate here on Earth.



And it's not just professional astronomers that will have access to the planets: “Our 3 million planet data set will be available to the public,” says Molly O’Beirne, a planetary scientist at the University of Pittsburgh who worked on the team.



The team also looked at ways to figure out the composition of these small and rocky planets in detail—which can give astrobiologists an idea of whether or not a world is habitable.



The third challenge went a step farther and started looking into one of the biggest questions in space exploration: how to identify life on other planets. As it is, astrobiologists have only one example of what a planet with life could look like—this one. They created 150,000 planets with atmospheres using a software program combined with Google Cloud, and started sorting out what factors future researchers (or their computer programs) might use to identify a lively planet.



The eight-week sessions are now over, as are the late-night discussions and sleepless nights the teams of researchers endured. Now their results will be poked, prodded, and improved upon. Many won’t have another chance quite like this, where astrobiologists and computer scientists sit side by side for two months, sorting through codes and questions. But they now know what can come out of that collaboration.



Will Fawcett, a particle physicist from the University of Cambridge, is embracing that key takeaway. “You can do truly interdisciplinary research,” he says. “It is possible, and it is rewarding for both parties.”




[ad_2]

Written By Mary Beth Griggs

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ic...

How to avoid the mid-movie bathroom break

[ad_1] Long movies and the urge to pee have been linked since the early days of cinema. Sixty-three years before Avengers: Endgame and its three-hour runtime, moviegoers settled in for nearly four hours of The Ten Commandments . “There will be an intermission,” director Cecil B. DeMille announced during the movie’s introduction. And audiences’ bladders were relieved. On average, movies aren’t getting longer, but they also don’t come with a predetermined bathroom break. That means when nature calls, you’ve got to either sit in growing discomfort or gamble on the best time to run to the restroom. But it doesn’t have to be this way, and for most people, setting your body to “do not disturb” is fairly simple. Go before the show The first piece of advice is also the easiest: pee before the movie starts. Generally, healthy adults urinate every 3-4 hours, so the longer a movie runs, the more urgent it becomes to reset your internal p...

Charted: Here's how much your food waste hurts the environment

[ad_1] Our species is pretty good at wasting food. Some we discard at the farm for being undersized or oddly shaped. Others we allow to decay in their shipping containers, thrown away before they even reach shelves. We leave even more foodstuffs wasting away in grocery stores, often by letting it sit there until it reaches its sell-by date. As consumers, we don’t have much control over most of the process that brings our food to the grocery store, but we do have control over how much food we personally waste. Let's face it: We’ve all found liquified lettuce in our veggie drawers. Don't fret. It's arguably impossible to consume 100 percent of the food we buy. But a healthy reminder of the effect food waste has on the environment might help us all to be more conscious of the amount of food we eat—and don't eat. Consumer food waste varies extensively depending on the area. In South and Southeast Asia, the Food and Agriculture Organization (FAO) estimates that only around ...