Skip to main content

Cell phone batteries are destined to die, and we have physics to blame

[ad_1]


Why do batteries die? And, why can they only be recharged so many times before they won’t hold a useful amount of charge? My young son asked me about that years ago when his battery-powered toy car stopped moving, wondering about what he called an “everlasting battery.” And this same question has probably crossed the mind of every cell phone user trying to send one last text before the screen blinks off.



Research, like mine, continues around the world to make batteries that charge faster, last longer, and can be recharged and discharged many more times than today’s. But as much as you and I would like, it’s impossible to make a truly everlasting battery. I have taught thermodynamics for more than 30 years. So far, there is nothing that suggests we can break the fundamental laws of science to get that elusive battery.



Battery scientists and engineers call the main problem “capacity fade.” Regular people wonder about it with questions like, “Why won’t my battery hold a charge?” and complaints like, “I just recharged this thing and it’s already out again!”



It’s a result of the second law of thermodynamics, which states that whenever some real process happens, it creates a certain amount of wasted energy along the way that can never be recovered. Any time a battery is charged or discharged, there’s a little bit of wasted energy—a little bit of wasted capacity in the battery that cannot be recovered.



To envision how this works, think about battery use like transferring water between two cups. Using a battery is like emptying the water from one cup into the other, and charging the battery involves pouring the water back into the first cup. Even if you do it one or two times without spilling a drop, there’s always just a little tiny bit left in each cup that you can’t pour out.


Now imagine pouring back and forth hundreds or even thousands of times over a period of two or three years (for a cellphone battery) or 10 to 20 years (for an electric car). Over time, all the thousands of little and big things that go wrong add up to quite a bit of water going missing. Even spilling a barely visible drop—say one-tenth of a milliliter—adds up to an entire liter if it happens 10,000 times. That doesn’t even include the possibility of one cup failing in some way that loses even more water—like springing a leak or heating up and causing evaporation.



Just as water inevitably goes missing when pouring from one cup to another, more energy is required to charge the battery than it actually stores, and less energy comes out than is stored in it. The proportion of wasted energy to stored energy grows over time.



In fact, the more you use a battery, the more energy gets wasted, and the sooner the battery will reach a point where it’s dead and can’t usefully be recharged. I and others are studying ways to have those discharging-recharging cycles run more smoothly to reduce the amount of waste, but the second law of thermodynamics will always make sure that there’s no way to get rid of it entirely.



Steve W. Martin is a professor of materials science and engineering at Iowa State University. This article was originally featured on The Conversation.




[ad_2]

Written By Steve W. Martin / The Conversation

Comments

Popular posts from this blog

Ice technicians are the secret stars of the Winter Olympics

[ad_1] The emphasis of this year's two-week-long Winter Olympic Games has been placed squarely on the Olympians themselves. After all, the stated purpose of the international competition is to bring together the world’s greatest athletes in a nail-biting competition across fifteen different winter sports. But before the curlers, skiers, and skaters even arrived in Pyeongchang, South Korea, the Olympians of the ice technician world were already a few weeks deep in a competition of their own. Mark Callan of the World Curling Federation and Markus Aschauer of the International Bobsleigh and Skeleton Federation both say they’re hoping to make the best ice the Winter Olympics have ever seen. To transform the barren concrete jungle of existing tracks and arenas into an ice- and snow-covered wonderland is an enormous undertaking. And it takes a keen understanding of the physics and chemistry that keeps frozen precipitation pristine. Curling Callan has been making and maintaining ic...

Humans flourished through a supervolcano eruption 74,000 years ago (so you can make it through Tuesday)

[ad_1] About 74,000 years ago, a large chunk of a Pacific island exploded. It sent ash and other debris around the world, including to the southern tip of Africa, where it would be found by a team of international scientists and entered as the latest data point in one of the hottest debates in paleoanthropology ( I know ): Did the Toba supervolcano thrust our planet into a 1,000-year volcanic winter, thus bottle-necking animals and plants alike? Or was it just a little blip on our historic radar? That’s the contentious arena into which our intrepid researchers venture, this time with a new study in Nature establishing that humans in modern-day South Africa not only survived, but flourished after the Toba eruption. Where once was (we think, maybe) a mountain, there is now a huge caldera with a lake inside, and an island inside that. Their evidence shows that debris from the explosion landed 9,000 kilometers (5592.3 miles) away, the farthest distance traveled ever recorded for the ...

These 1950s experiments showed us the trauma of parent-child separation. Now experts say they're too unethical to repeat—even on monkeys.

[ad_1] John Gluck’s excitement about studying parent-child separation quickly soured. He’d been thrilled to arrive at the University of Wisconsin at Madison in the late 1960s, his spot in the lab of renowned behavioral psychologist Harry Harlow secure. Harlow had cemented his legacy more than a decade earlier when his experiments showed the devastating effects of broken parent-child bonds in rhesus monkeys. As a graduate student researcher, Gluck would use Harlow’s monkey colony to study the impact of such disruption on intellectual ability. Gluck found academic success, and stayed in touch with Harlow long after graduation. His mentor even sent Gluck monkeys to use in his own laboratory. But in the three years Gluck spent with Harlow—and the subsequent three decades he spent as a leading animal researcher in his own right—his concern for the well-being of his former test subjects overshadowed his enthusiasm for animal research. Separating parent and child,...